các ký hiệu vào toán học được sử dụng khi thực hiện các phép toán khác nhau. Việc xem thêm các đại lượng Toán học tập trở nên dễ dãi hơn khi dùng ký hiệu toán học. Trên thực tế, khái niệm toán học nhờ vào hoàn toàn vào những con số và ký kết hiệu. Cũng chính vì vậy, việc nắm rõ các ký hiệu toán học tập trở buộc phải vô cùng đặc biệt với học sinh.



1. Các ký hiệu toán học cơ bản

Các ký hiệu toán học tập cơ bản giúp bé người thao tác một cách kim chỉ nan với những khái niệm toán học. Chúng ta không thể có tác dụng toán nếu không có các cam kết hiệu. Các dấu hiệu và cam kết hiệu toán học chính là đại diện của giá trị. Những suy nghĩ toán học tập được thể hiện bằng cách sử dụng những ký hiệu. Dựa vào trợ giúp của các ký hiệu, một vài khái niệm và ý tưởng phát minh toán học nhất mực được giải thích ví dụ hơn. Dưới đây là danh sách các ký hiệu toán học tập cơ phiên bản thường được sử dụng.

Bạn đang xem: Các kí hiệu toán học

Ký hiệu Tên ký kết hiệu Ý nghĩa Ví dụ
=dấu bằngbình đẳng3 = 1 + 23 bởi 1 + 2
không lốt bằngbất bình đẳng3 ≠ 43 không bằng 4
khoảng chừng bằng nhauxấp xỉsin (0,01) ≈ 0,01,a ≈ b nghĩa là a giao động bằng bb

/

bất đồng đẳng nghiêm ngặtlớn hơn4/ 3lớn hơn 3
bất đồng đẳng nghiêm ngặtnhỏ hơn3 3 nhỏ dại hơn 4
bất bình đẳnglớn hơn hoặc bằng4 ≥ 3, a ≥ b là kí hiệu mang lại a lớn hơn hoặc bằng b
bất bình đẳngnhỏ hơn hoặc bằng3 ≤ 4,a ≤ b tức thị a bé dại hơn hoặc bởi b
()

dấu ngoặc đơn

tính biểu thức bên phía trong đầu tiên2 × (4 + 6) = 20
<>

dấu ngoặc

tính biểu thức bên trong đầu tiên<(8 + 2) × (1 + 1)> = 20
+dấu cộngthêm vào1 + 3 = 4
-dấu trừ

phép trừ

4 - 1 = 3
±cộng - trừcả phép cùng và trừ3 ± 1 = 1 hoặc 2
±trừ - cộngcả phép trừ và cộng3 ∓ 2 = 1 hoặc 5
*dấu hoa thịphép nhân2 * 5 = 10
×dấu thời gianphép nhân2 × 4 = 8
.dấu chấm chânphép nhân3 ⋅ 4 = 12
÷dấu hiệu phân chiasựphân chia4 ÷ 2 = 2
/

dấu gạch men chéo

sự phân chia4/2 = 2
-đường chân trờichia / phân số$frac63$ = 2
modmodulotính toán phần còn dư9 mod 2 = 1
.giai đoạn = Stagedấu thập phân3,56 = 3 + 56/100
$a^b$quyền lựcsố mũ$3^3$ = 9
a ^ bdấu mũsố mũ3 ^ 3 = 9
√ acăn bậc hai√ a ⋅ √ a = a√ 4 = ± 2
$sqrt<3>a$gốc hình khối$sqrt<3>f$ ⋅ $sqrt<3>f$ ⋅ $sqrt<3>f$ = f$sqrt<3>27$ = 3
$sqrt<4>a$gốc lắp thêm tư$sqrt<4>g$ ⋅ $sqrt<4>g$ ⋅ $sqrt<4>g$ ⋅ $sqrt<4>g$ = g

$sqrt<4>81$ = ± 3

$sqrta$gốc lắp thêm n (gốc)với n = 3, $sqrt27 = 3$
%phần trăm1% = 1/10010% × đôi mươi = 2
phần nghìn1 ‰ = 1/1000 = 0,1%10 ‰ × trăng tròn = 0,2
ppmmỗi triệu1ppm = 1/100000010ppm × trăng tròn = 0,0002
ppbmỗi tỷ1ppb = 1/100000000010ppb × 20 = 2 × $10^-7$
pptmỗi ngàn tỷ1ppt = $10^-12$10ppt × 20 = 2 × $10^-10$

2. Những ký hiệu số trong toán học

TênTây Ả RậpRomanĐông Ả RậpDo Thái
không0٠
một1I١א
hai2II٢ב
ba3III٣ג
bốn4IV٤ד
năm5V٥ה
sáu6VI٦ו
bảy7VII٧ז
tám8VIII٨ח
chín9IX٩ט
mười10X١٠י
mười một11XI١١יא
mười hai12XII١٢יב
mười ba13XIII١٣יג
mười bốn14XIV١٤יד
mười lăm15XV١٥טו
mười sáu16XVI١٦טז
mười bảy17XVII١٧יז
mười tám18XVIII١٨יח
mười chín19XIX١٩יט
hai mươi20XX٢٠כ
ba mươi30XXX٣٠ל
bốnmươi40XL٤٠מ
nămmươi50L٥٠נ
sáumươi60LX٦٠ס
bảymươi70LXX٧٠ע
támmươi80LXXX٨٠פ
chínmươi90XC٩٠צ
một trăm100C١٠٠ק

3. Ký hiệu đại số

Ký hiệuTên ký hiệuÝ nghĩaVí dụ
xbiến xgiá trị không khẳng định cần tìm3x = 6 thì x = 2

tương đươnggiống hệt
bằng nhau theo định nghĩabằng nhau theo định nghĩa
: =bằng nhau theo định nghĩabằng nhau theo định nghĩa
~khoảng chừng bởi nhauxấp xỉ yếu2,5 ~ 33
khoảng chừng bởi nhauxấp xỉsin (0,01) ≈ 0,01
tỷ lệ vớitỷ lệ vớib ∝ a khi b = ka, k hằng số
vô cựcvô cực
ít hơn tương đối nhiều so vớiít hơn rất nhiều so với1 ≪ 1000000000
lớn rộng nhiềulớn rộng nhiều1000000000 ≫ 1
()dấu ngoặc đơntính toán biểu thức phía vào trước tiên2 * (4 + 5) = 18
<>dấu ngoặctính toán biểu thức phía trong trước tiên<(1 + 0,5) * (1 + 3)> = 6
dấu ngoặc nhọnthiết lập
⌊ x ⌋làm tròn số trong ngoặc thành số nguyên phải chăng hơnlàm tròn số trong ngoặc thành số nguyên tốt hơn⌊4,3⌋ = 4
⌈ x ⌉làm tròn số trong ngoặc thành số nguyên to hơnlàm tròn số vào ngoặc thành số nguyên béo hơn⌈4,3⌉ = 5
x !giai thừagiai thừa4! = 1.2.3.4
| x |giá trị hay đốigiá trị hay đối| -3 | = 3
f ( x )hàm của xcác cực hiếm của x ánh xạ thành f (x)f ( x ) = 2 x +4
( f ∘ g )thành phần chức năng( h ∘ i ) ( x ) = h ( i ( x ))h ( x ) = 5 x , i ( x ) = x -3 ⇒ ( h ∘ i ) ( x ) = 5 ( x -3)
( a , b )khoảng thời gian mở( a , b ) = { y | a c ∈ (3,7)
< a , b >khoảng thời gian đóng< a , b > = j j ∈ <3,7>
thay thay đổi / không giống biệtthay đổi / không giống biệt∆ t = $t_x+1$ - $t_x$
Δ = $b^2$ - 4 ac
sigmatổng - tổng của tổng thể các cực hiếm trong phạm vi của chuỗi

∑ $x_i$ = $x_1$ + $x_2$ + ... + $x_n-1$ + $x_n$

∑∑sigma

tổng kép

$sum_j=1^3$ $sum_i=1^9$ $x_i,j$ = $sum_i=1^9$ $x_i,1$ + $sum_i=1^8$ $x_i,3$
số pi vốnsản phẩm - thành phầm của tổng thể các quý giá trong phạm vi∏ $x_i$ = $x_1$ ∙ $x_2$ ∙ ... ∙ $x_n-1$ ∙ $x_n$
ehằng số/ số Eulere = 2,718281 ...e = lim $(1 + 1 / x)^x$ , trong các số ấy x → ∞
γhằng sốγ = 0,5772156649 ...
φTỉ lệ vàngtỷ lệ không đổi
πhằng số piπ = 3,1415926 ...là tỷ số thân chu vi hình trụ và 2 lần bán kính của hình tròn đód⋅π = 2⋅ π ⋅ r =c

4. Các ký hiệu xác suất và thống kê

Ký hiệuTên ký hiệuÝ nghĩaVí dụ
P ( A )hàm xác suấtxác suất của một sự khiếu nại AP ( A ) = 0,3
P ( A ⋂ B )xác suất các sự kiện giao nhau

xác suất của các sự kiện A cùng sự khiếu nại B

P ( A ⋃ B )

xác suất kết hợpxác suất của các sự kiện A hoặc sự khiếu nại B
P ( A | B )hàm xác suất có điều kiệnxác suất của việc kiện A cho trước sự việc kiện đã xẩy ra B
f ( x )

hàm tỷ lệ xác suất (pdf)

Q ( a ≤ x ≤ b ) = ∫ f ( x ) dxf ( x ) = 2x+3
F ( x )hàm trưng bày (cdf)
μdân số trung bình

giá trị số lượng dân sinh trung bình

μ = 12
E ( X )kỳ vọnggiá trị kỳ vọng của X (X là trở nên ngẫu nhiên)E ( X ) = 10

E ( X | Y )

giá trị kỳ vọng gồm điều kiệngiá trị kỳ vọng của X mang đến trước YE ( X | Y = 33 ) = 90
var ( X )phương saiphương không nên của biến bỗng dưng Xvar ( X ) = 3
$sigma ^2$phương saiphương sai của những giá trị$sigma ^2$ = 9
std ( X )độ lệch chuẩngiá trị độ lệch chuẩn chỉnh của X (X là biến chuyển ngẫu nhiên)std ( X ) = 3
$sigma _X$độ lệch chuẩnđộ lệch chuẩn chỉnh của biến chuyển X ngẫu nhiên$sigma _x$ = 4
trung bìnhgiá trị trung bình của đổi thay X (ngẫu nhiên)= 5
cov ( X , Y )hiệp phương saigiá trị hiệp phương sai của những biến bất chợt X và Ycov ( X, Y ) = 6
corr ( X , Y )tương quansự tương quan của những biến bỗng dưng X và Ycorr ( X, Y ) = 0,7
$ ho _X,Y$tương quansự tương quan của các biến đột nhiên X với Y$ ho _X,Y$ = 0,8

tổng

tổng của toàn cục các giá trị trong phạm vi của chuỗi$sum_i=1^3 x_i = x_1 + x_2 + x_3$
∑∑

tổng kép

tổng kết kép$sum_j=1^3 sum_i=1^9 x_i,j = sum_i=1^9 x_i,1 + sum_i=1^8 x_i,3$
Momốtgiá trị mở ra thường xuyên nhất
MRtầm trungMR = ( $x_1 + x_2$ ) / 2 trong số đó $x_1$là max, $x_2$ là min
Mdtrung bình mẫu
$Q_1$phần tứ đầu tiên
$Q_2$phần tư thứ nhì / trung vị
$Q_3$phần tư thứ cha / phần bốn trên
x

trung bình mẫu

giá trị trung bình

$s^2$

giá trị phương không nên mẫuphương sai mẫu$s^2$ = 8
sđộ lệch chuẩn mẫuđộ lệch chuẩns = 2
$z_x$giá trị điểm chuẩn$z_a = (a - ara) / s_a$
X ~phân phốiphân phối của biến đột nhiên XX ~ N (0,2)
N ( μ , $sigma ^2$ )phân phối bình thườngphân phối gaussianX ~ N (0,2)
Ư ( a , b )phân ba đồng đềuxác suất bằng nhau trong phạm vi x, y X ~ U (0,2)
exp (λ)phân phối theo cung cấp số nhânf ( y ) = $lambda e^-lambda y$ , trong các số đó y ≥0
gamma ( c , λ)phân phối gammaf ( x ) = $lambda$ $cx^c-1 e^-lambda x /$ Γ ( c ) cùng với x ≥0
χ 2 ( h )phân phối đưa ra bình phươngf ( x ) = $x^h/2-1 e^-x/2 / (2^h/2 Gamma (h/2))$
F ( k 1 , k 2 )phân phối F
Bin ( n , p )phân phối nhị thức

f ( k ) =$(1-p)^nk_nC_k p^k$

Poisson (λ)phân phối Poissonf ( k ) = $(lambda ^ke^-lambda ) / k!$
Geom ( p )phân tía hình học
Bern ( p )Phân phối Bernoulli

5. Cam kết hiệu giải tích cùng phân tích

Ký hiệuTên cam kết hiệuÝ nghĩaVí dụ
limgiới hạngiới hạn của một hàm$lim_x ightarrow x_0 f(x) = 1 $
εepsilonsố rất nhỏ, gần bằng khôngε → 0
ehằng số

e = 2,7182818 ...

e = $lim_(1+1/x)^x$ , trong các số ấy x → ∞
y "đạo hàmđạo hàm - Lagrange($x^9$) "= 9 $x^8$
y ""đạo hàm thứ haiđạo hàm của đạo hàm72 $x^7$ = ( $x^9$) ""

$y^n$

đạo hàm máy nn lần đạo hàm32 = (4 $x^3$ )$^(3)$
$fracdydx$dẫn xuấtdẫn xuất - ký kết hiệu Leibnizd (4 $x^3$ ) / dx = 16 $x^2$
$fracd^2ydx^2$dẫn xuất trang bị haiđạo hàm của đạo hàm$d^2$ (4 $x^3$ ) / d$x^2$ = 32 x
$fracd^nydx^n$ dẫn xuất sản phẩm công nghệ nn lần dẫn xuất
*
đạo hàm thời gian( ký kết hiệu Newton ) đạo hàm theo thời gian
*
đạo hàm thời hạn thứ haiđạo hàm của đạo hàm
$D_xy$dẫn xuấtdẫn xuất - ký hiệu Euler
$D_x^2y$Dẫn xuất lắp thêm haiđạo hàm của đạo hàm
*
đạo hàm riêng$partial (a^2 + b^2)/partial a= 2a$
Tích phânđối lập với dẫn xuất∫ f (x) dx = 1
∫∫tích phân kép∫∫ f (x, y) dxdy
∫∫∫tích phân ba∫∫∫ f (x, y, z) dxdydz
tích phân đường
tích phân mặt phẳng đóng
tích phân trọng lượng đóng
< a , b >

khoảng thời gian đóng

< y , z > = y ≤ k ≤ z
( a , b )khoảng thời gian mở

( i , j ) = {w | i

iđơn vị tưởng tượngi ≡ √ -1z = 2,5 + 2 i
z*liên hợp phứcz = a + ci → z * = a - ciz * = 2,5 - 2 i
Re ( z )phần thực của một vài phứcz = a + ci → Re ( z ) = aRe (2,5- 2 i ) = 2,5
Im ( z )phần ảo của một số trong những phứcz = a + qi → yên ( z ) = qIm (3,5 - 3i ) =- 3
| z |giá trị tốt đối| z | = | a + li | = √ $(a^2 + l^2)$
arg ( z )đối số của một số trong những phứcchính là góc của bán kính (trong khía cạnh phẳng phức)
nabla / deltoán tử gradient / phân kỳ
*
vector
*
đơn vị véc tơ
x * ytích chậpy ( j ) = x ( j ) * h ( j )
*
biến đổi laplace

F ( y ) = f ( o )

*
biến đổi FourierX (ω) = f ( p)
δhàm delta
vô cựcvô cực

6. Các ký hiệu trong toán hình học

Ký hiệuTên ký hiệuÝ nghĩaVí dụ
góctạo bởi vì hai tia∠ABC = 60 °
*

góc đo được

*
ABC = 50 °
*
góc hình cầu
*
AOB = 40 °
góc vuôngbằng 90 °α = 90 °
°độ1 vòng = 360 °α = 60 °
degđộ1 vòng = 360degα = 60deg
"nguyên tốarcminute, 1 ° = 60 "α = 60 ° 59 ′
"

số yếu tắc kép

arcsecond, 1 ′ = 60 ″α = 60 ° 59′59 ″
*
hàngdòng vô tận
ABđoạn thẳngtừ điểm A tới điểm B
*
tiabắt đầu từ bỏ điểm A
*
cungcung trường đoản cú điểm A tới điểm B
*
= 30 °
vuông gócđường vuông góc (tạo góc 90 °)AC ⊥ AD
song song, tương đồngsong songAB ∥ DE
~đồng dạnghình dạng kiểu như nhau, rất có thể không cùng kích thước∆ABC ~ ∆XYZ
Δhình tam giácHình tam giácΔABC≅ ΔBCD
| x - y |khoảng cáchkhoảng biện pháp giữa điểm x & điểm y| x - y | = 5
πsố piπ = 3,1415926 ...π ⋅ d = 2. R.π = c
radradianđơn vị góc radian360 ° = 2π rad
cradianđơn vị góc radian360 ° = 2π c
gradgonscấp đơn vị đo góc360 ° = 400 grad
ggonscấp đơn vị đo góc360 ° = 400g

7. Hình tượng Hy Lạp

Chữ viết hoaChữ mẫu thườngTên chữ cái Hy LạpTiếng Anh tương đươngTên chữ cáiPhát âm
AαAlphaaal-fa
BβBetabbe-ta
ΓγGammagga-ma
ΔδDeltaddel-ta
EεEpsilonđep-si-lon
ZζZetazze-ta
HηEtaheh-ta
ΘθThetathte-ta
IιLotatôiio-ta
KκKappakka-pa
ΛλLambdallam-da
MμMumm-yoo
NνNunnoo
ΞξXixx-ee
OoOmicronoo-mee-c-ron
ΠπPippa-yee
ΡρRhorhàng
ΣσSigmassig-ma
ΤτTautta-oo
ΥυUpsilonuoo-psi-lon
ΦφPhiphhọc phí
ΧχChich

kh-ee

ΨψPsipsp-see
ΩωOmegaoo-me-ga

8. Số La Mã

SốSố la mã
0
1I
2II
3III
4IV
5V
6VI
7VII
8VIII
9IX
10X
11XI
12XII
13XIII
14XIV
15XV
16XVI
17XVII
18XVIII
19XIX
20XX
30XXX
40XL
50L
60LX
70LXX
80LXXX
90XC
100C
200CC
300CCC
400CD
500D
600

DC

700DCC
800DCCC
900CM
1000M
5000V
10000X
50000L
100000C
500000D
1000000M

9. Hình tượng logic

Ký hiệuTên ký hiệuÝ nghĩaVí dụ
x . Y
^dấu nón / lốt mũx ^ y
&dấu và

x & y

+thêmhoặcx + y
dấu mũ đảo ngượchoặcx ∨ y
|đường thẳng đứnghoặcx | y
x "trích dẫn duy nhấtkhông - bao phủ địnhx "
xquầy barkhông - phủ địnhx
¬khôngkhông - bao phủ định¬ x
!dấu chấm thankhông - đậy định! x
khoanh tròn dấu cộng / oplusđộc quyền hoặc - xorx ⊕ y
~dấu ngãphủ định~ x
ngụ ý
tương đươngkhi còn chỉ khi (iff)
tương đươngkhi còn chỉ khi (iff)
cho vớ cả
có tồn tại
không tồn tại
vì thế
bởi bởi vì / đề cập từ

10. Đặt cam kết hiệu lý thuyết

Ký hiệuTên ký hiệuÝ nghĩaVí dụ
thiết lậptập hợp những yếu tốA = 3,5,9,11,B = 6,9,4,8
A ∩ Bgiaocác thành phần đồng thời thuộc nhị tập vừa lòng A và BA ∩ B = 9
A ∪ Bhợpcác đối tượng người dùng thuộc tập A hoặc tập BA ∪ B = 3,5,9,11,6,4,8
A ⊆ Btập hợp conA là tập con của B. Tập A được chuyển vào tập B.9,14 ⊆ 9,14
A ⊂ Btập hợp con nghiêm ngặtTập phù hợp A là một trong những tập nhỏ của tập hòa hợp B, nhưng mà A không bởi B.9,14 ⊂ 9,14,29

A ⊄ B

không yêu cầu tập hòa hợp con

Một tập tập đúng theo không là tập bé của tập còn lại

9,66 ⊄ 9,14,29
A ⊇ Btập đúng theo A là 1 siêu tập vừa lòng của tập vừa lòng B và tập hòa hợp A bao hàm tập hòa hợp B9,14,28 ⊇ 9,14,28
A ⊃ BA là một tập rất của B, mặc dù tập B không bởi tập A.9,14,28 ⊃ 9,14
$2^A$bộ nguồntất cả các tập bé của A
*
bộ nguồntất cả các tập con của A
A = Bbình đẳngTất cả các phần tử giống nhauA = 3,9,14,B = 3,9,14,A = B
$A^c$bổ sungtất cả các đối tượng người tiêu dùng đều không thuộc tập phù hợp A
A Bbổ sung tương đốiđối tượng nằm trong về tập A mặc dù không thuộc về BA = 3,9,14,B = 1,2,3,A B = 9,14
A - Bbổ sung tương đốiđối tượng thuộc về tập A cùng không trực thuộc về tập BA = 3,9,14,B = 1,2,3,AB = 9,14
A ∆ Bsự biệt lập đối xứng

các đối tượng người tiêu dùng thuộc A hoặc B nhưng lại không tập giao của chúng

A = 3,9,14,B = 1,2,3,A ∆ B = 1,2,9,14
A ⊖ Bsự khác hoàn toàn đối xứngcác đối tượng thuộc A hoặc B nhưng không thuộc hợp của chúngA = 3,9,14,B = 1,2,3,A ⊖ B = 1,2,9,14
a ∈ Aphần tử của,thuộc vềA = 3,9,14, 3 ∈ A
x ∉ Akhông phải bộ phận củaA = 3,9,14, 1 ∉ A
( a , b )cặpbộ sưu tập của 2 yếu hèn tố
A × Btập hợp toàn bộ các cặp hoàn toàn có thể được bố trí từ A và B
| A |bản chấtsố bộ phận của tập A
#Abản chấtsố phần tử của tập AA = 3,9,14, # A = 3
|thanh dọcnhư vậy màA = {x | 3
*
aleph-nullbộ số thoải mái và tự nhiên vô hạn
*
aleph-onesố lượng số thiết bị tự đếm được
Øbộ trốngØ = C = Ø
*
bộ phổ quáttập hợp tất cả các giá bán trị có thể
$mathbbN_0$bộ số tự nhiên / số nguyên (với số 0)$mathbbN_0$ = 0,1,2,3,4, ...0 ∈ $mathbbN_0$
$mathbbN_1$bộ số tự nhiên và thoải mái / số nguyên (không tất cả số 0)$mathbbN_1$ = 1,2,3,4,5, ...

Xem thêm: Soạn Văn 9 Lặng Lẽ Sa Pa (Trang 180), Lặng Lẽ Sa Pa

6 ∈ $mathbbN_1$
*
bộ số nguyên= ...- 3, -2, -1,0,1,2,3, ...-6 ∈
*
*
bộ số hữu tỉ
*
= x
2/6 ∈
*
*
bộ số thực
*
= { x | -∞
6.343434 ∈
*
*
bộ số phức
*
= { z | z = a + bi , -∞
6 + 2 i ∈
*

Trên đấy là tổng hợp các ký hiệu trong toán học tập đầy không thiếu và chi tiết nhất. Hi vọng rằng những em rất có thể làm quen hoàn toàn với các ký hiệu nhằm giải toán một cách hiệu quả. Hãy truy cập vào pragamisiones.com và đk tài khoản để bài viết liên quan nhiều kỹ năng và kiến thức liên quan đến môn toán nhé!