Trong nội dung bài viết này, cửa hàng chúng tôi sẽ chia sẻ lý thuyết và các dạng bài tập về phương trình lượng giác cơ bản giúp các ôn lại kiến thức và kỹ năng để sẵn sàng hành trang thật kỹ càng cho các kỳ thi đạt kết qua cao nhé


Lý thuyết phương trình lượng giác cơ bản thường gặp2. Phương trình cos x = cos α, cos x = a (2)Các dạng bài bác tập về phương trình lượng giác

Lý thuyết phương trình lượng giác cơ bản thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Bạn đang xem: Cách giải phương trình lượng giác cơ bản lớp 11

Nếu |a|≤1 thì lựa chọn cung α sao cho sinα=a. Lúc đó (1)

*


Các ngôi trường hợp quánh biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì lựa chọn cung α làm thế nào để cho cosα = a.

Khi kia (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. Cosx = a đk -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. Cosu = cosv ⇔ cosu = cos( π – v)

d. Cosu = sinv ⇔ cosu = cos(π/2 – v)

e. Cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các ngôi trường hợp quánh biệt:

*

3. Phương trình tan x = chảy α, chảy x = a (3)

Chọn cung α làm thế nào để cho tanα = a. Lúc ấy (3)

*

Các ngôi trường hợp sệt biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α làm thế nào để cho cotα = a.

Khi kia (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các ngôi trường hợp quánh biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình hàng đầu đối với 1 hàm số lượng giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, lấy một ví dụ asinx + b = 0 ⇔ sinx = -b/a

6. Phương trình bậc hai đối với một hàm số lượng giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta tất cả phương trình at2 + bt + c = 0

Lưu ý lúc để t = sinx hoặc t = cosx thì yêu cầu có điều kiện -1≤ t ≤1

7. Một vài điều đề xuất chú ý:

a) khi giải phương trình gồm chứa các hàm số tang, cotang, tất cả mẫu số hoặc cất căn bậc chẵn, thì độc nhất thiết bắt buộc đặt đk để phương trình xác định

*

b) Khi kiếm được nghiệm cần kiểm tra điều kiện. Ta hay được dùng một trong số cách sau để bình chọn điều kiện:

Kiểm tra trực tiếp bằng cách thay cực hiếm của x vào biểu thức điều kiện.Dùng đường tròn lượng giác để biểu diễn nghiệmGiải các phương trình vô định.

c) áp dụng MTCT để thử lại những đáp án trắc nghiệm

Các dạng bài bác tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng các công thức nghiệm khớp ứng với mỗi phương trình

Ví dụ 1: Giải những phương trình lượng giác sau:

a) sinx = sin(π/6). C) tanx – 1 = 0

b) 2cosx = 1. D) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

*

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải các phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Ví dụ 3: Giải những phương trình sau: (√3-1)sinx = 2sin2x.

*

Dạng 2: Phương trình bậc nhất có một hàm lượng giác

Phương pháp: Đưa về phương trình cơ bản, ví dụ như asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

*

Dạng 3: Phương trình bậc hai bao gồm một các chất giác 

Phương pháp

Phương trình bậc hai so với một hàm số lượng giác là phương trình có dạng :

a.f2(x) + b.f(x) + c = 0 cùng với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta có phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm kiếm được t, từ đó tìm kiếm được x

Khi để t = sinu(x) hoặc t = cosu(x), ta tất cả điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

*

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

*

Dạng 4: Phương trình hàng đầu theo sinx cùng cosx

Xét phương trình asinx + bcosx = c (1) cùng với a, b là các số thực không giống 0.

*

*

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

*

Dạng 5: Phương trình lượng giác đối xứng, bội phản đối xứng

Phương pháp

Phương trình đối xứng là phương trình bao gồm dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình bên trên ta áp dụng phép đặt ẩn phụ:

*

Thay vào (3) ta được phương trình bậc hai theo t.

Ngoài ra chúng ta còn gặp gỡ phương trình phản bội đối xứng gồm dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

*

Thay vào (4) ta giành được phương trình bậc hai theo t.

Xem thêm: Viết Đoạn Văn Nêu Suy Nghĩ Của Em Về Cái Chết Của Vũ Nương ?

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

*

Hy vọng cùng với những kỹ năng và kiến thức mà cửa hàng chúng tôi vừa share có thể giúp chúng ta hệ thống lại kiến thức và kỹ năng về phương trình lượng giác cơ bạn dạng từ đó áp dụng vào làm bài bác tập lập cập và đúng chuẩn nhé