A circle centered at the origin of the coordinate system và with a radius of 1 is known as a unit circle.
Bạn đang xem: Trigonometric functions

If phường is a point from the circle & A is the angle between PO and x axis then:
The x-coordinate of p is called the cosine of A và is denoted by cos A;
The y-coordinate of p. Is called the sine of A và is denoted by sin A;
The number $fracsin(A)cos(A)$ is called the tangent of A & is denoted by chảy A;
The number $fraccos(A)sin(A)$ is called the cotangent of A và is denoted by cot A.
The sine function
sin: R -> RAll trigonometric functions are periodic. The period of sine is $2pi$.The range of the function is <-1,1>.


The tangent function
tan : R -> RThe range of the function is R.The period is $pi$ and the tangent function is undefined at $x = fracpi2 + kpi$, k=0,1,2,...Here is the graph of the tangent function on the interval $0 - pi$

Animated graph (opens in a new window):The graph of tangent function on the interval $0 - 2pi$
The cotangent functioncot : R -> RThe range of the function is R.The period is $pi$ & that the function is undefined at $x = kpi$, k=0,1,2,...
Xem thêm: Hậu Quả Của Ngập Lụt - Nguyên Nhân, Thiệt Hại Và Cách Ứng Phó

The values of sin, cos, tan, cot at the angles of 0°, 30°, 60°, 90°, 120°,135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°
$A rad$ | $0$ | $fracpi6$ | $fracpi4$ | $fracpi3$ | $fracpi2$ | $frac2pi3$ | $frac3pi4$ | $frac5pi6$ | $pi$ | $frac7pi6$ | $frac5pi4$ | $frac4pi3$ | $frac3pi2$ | $frac5pi3$ | $frac7pi4$ | $frac11pi6$ | $2pi$ | ||||||||||||||||||
$sin A$ | $0$ | $frac12$ | $fracsqrt22$ | $fracsqrt32$ | $1$ | $fracsqrt32$ | $fracsqrt22$ | $frac12$ | $0$ | $-frac12$ | $-fracsqrt22$ | $-fracsqrt32$ | $-1$ | $-fracsqrt32$ | $-fracsqrt22$ | $-frac12$ | $0$ | ||||||||||||||||||
$cos A$ | $1$ | $fracsqrt32$ | $fracsqrt22$ | $frac12$ | $0$ | $-frac12$ | $-fracsqrt22$ | $-fracsqrt32$ | $-1$ | $-fracsqrt32$ | $-fracsqrt22$ | $-frac12$ | $0$ | $frac12$ | $fracsqrt22$ | $fracsqrt32$ | $1$ | ||||||||||||||||||
$ an A$ | $0$ | $fracsqrt33$ | $1$ | $sqrt3$ | $-$ | $-sqrt3$ | $-1$ | $-fracsqrt33$ | $0$ | $fracsqrt33$ | $1$ | $sqrt3$ | $-$ | $-sqrt3$ | $-1$ | $-fracsqrt33$ | $0$ | $cot A$ | $-$ | $sqrt3$ | $1$ | $fracsqrt33$ | $0$ | $-fracsqrt33$ | $-1$ | $-sqrt3$ | $-$ | $sqrt3$ | $1$ | $fracsqrt33$ | $0$ | $-fracsqrt33$ | $-1$ | $-sqrt3$ | $-$ |
The easiest way khổng lồ remember the basic values of sin and cosat the angles of 0°, 30°, 60°, 90°:sin(<0, 30, 45, 60, 90>) = cos(<90, 60, 45, 30, 0>) = sqrt(<0, 1, 2, 3, 4>/4)
Basic Trigonometric IdentitiesFor every angle $alpha$ corresponds exactly one point $P(cos(alpha),sin(alpha))$ on the unit circle.
$sin^2(alpha) + cos^2(alpha) = 1$
If the sum of two angles $alpha$ và $eta$ is 180 (i.e. $alpha + eta = 180^circ$) then:
$sin(alpha) = sin(eta)$$cos(alpha) = -cos(eta)$$ an(alpha) = - an(eta)$$cot(alpha) = -cot(eta)$
If the sum of two angles $alpha$ and $eta$ is 90 (i.e. $alpha + eta = 90^circ$) then:
$sin(alpha) = cos(eta)$$cos(alpha) = sin(eta)$$ an(alpha) = cot(eta)$$cot(alpha) = an(eta)$
$-alpha$ | $90^circ - alpha$ | $90^circ + alpha$ | $180^circ - alpha$ | |
$ extrm sin $ | $- extrm sin alpha$ | $ extrm cos alpha$ | $ extrm cos alpha$ | $ extrm sin alpha$ |
$ extrm cos $ | $ extrm cos alpha$ | $ extrm sin alpha$ | $- extrm sinalpha$ | $- extrm cos alpha$ |
$ extrm chảy $ | $- extrm tung alpha$ | $ extrm cot alpha$ | $- extrm cot alpha$ | $- extrm rã alpha$ |
$ extrm cot $ | $- extrm cot alpha$ | $ extrm tan alpha$ | $- extrm tan alpha$ | $- extrm cot alpha$ |
Trigonometric Formulas
Half-Angle Formulas$sinfracalpha2=pmsqrtfrac1-cos alpha2$
+ (positive) if $fracalpha2$ lies in quadrant | or ||
- (negative) if $fracalpha2$ lies in quadrant ||| or |V
$cosfracalpha2=pmsqrtfrac1+cos alpha2$
+ (positive) if $fracalpha2$ lies in quadrant | or |V
- (negative) if $fracalpha2$ lies in quadrant || or |||
$ anfracalpha2=pmsqrtfrac1-cos alpha1+cos alpha$
+ (positive) if $fracalpha2$ lies in quadrant | or |||
- (negative) if $fracalpha2$ lies in quadrant || or |V
$cotfracalpha2=pmsqrtfrac1+cos alpha1-cos alpha$
+ (positive) if $fracalpha2$ lies in quadrant | or |||
- (negative) if $fracalpha2$ lies in quadrant || or |V
$ anfracalpha2 = fracsin alpha1+cos alpha = frac1-cos alphasin alpha=csc alpha-cot alpha$
$cotfracalpha2 = fracsin alpha1-cos alpha = frac1+cos alphasin alpha=csc alpha+cot alpha$
Double và Triple Angle Formulas
$sin(2alpha) = 2sin(alpha)cdot cos(alpha)$
$cos(2alpha) = cos^2(alpha) - sin^2(alpha) = 2cos^2(alpha) - 1 = 1 - 2sin^2(alpha)$
$ an(2alpha) = frac2 an(alpha)1- an^2(alpha)$
$cos(2alpha) = frac1 - an^2(alpha)1 + an^2(alpha)$
$sin(2alpha) = frac2 an(alpha)1 + an^2(alpha)$
$sin3alpha = 3sin alpha - 4 sin^3alpha$
$cos3alpha = 4cos^3alpha - 3 cos alpha$
$ an3alpha=frac3 an alpha - an^3alpha1-3 an^2alpha$
$cot3alpha=fraccot^3alpha-3cot alpha3cot^2alpha-1$
$sin4alpha = 4cos^3Acdot sin alpha - 4cos alphacdot sin^3alpha$
$cos4alpha = cos^4alpha - 6cos^2alphacdot sin^2alpha + sin^4alpha$
$ an4alpha=frac4 an alpha - 4 an^3A1-6 an^2alpha+ an^4alpha$
$cot4alpha=fraccot^4alpha-6cot^2alpha+14cot^3alpha-4cot alpha$
Power-Reducing Formulas$sin^2(alpha)=frac1 - cos(2alpha)2$
$sin^3(alpha)=frac3sin alpha - sin(3alpha)4$
$sin^4(alpha)=fraccos(4alpha) - 4cos(2alpha) + 38$
$cos^2(alpha) = frac1 + cos(2alpha)2$
$cos^3(alpha)=frac3cos alpha + cos(3alpha)4$
$cos^4(alpha)=frac4cos(2alpha) + cos(4alpha) + 38$
Sum & Difference of Angles$sin(alpha + eta) = sin(alpha)cdot cos(eta) + cos(alpha)cdot sin(eta)$
$sin(alpha - eta) = sin(alpha)cdot cos(eta) - cos(alpha)cdot sin(eta)$
$cos(alpha + eta) = cos(alpha)cdot cos(eta) - sin(alpha)cdot sin(eta)$
$cos(alpha - eta) = cos(alpha)cdot cos(eta) + sin(alpha)cdot sin(eta)$
$ an(alpha + eta) = fracsin(alpha + eta)cos(alpha + eta)=fracsin(alpha)cdot cos(eta) + cos(alpha)cdot sin(eta)cos(alpha)cdot cos(eta) - sin(alpha)cdot sin(eta)$
$ an(alpha + eta) = frac an(alpha) + an(eta)1 - an(alpha)cdot an(eta)$
$cot(alpha pm eta) = fraccot(eta)cot(alpha)mp 1cot(eta)pm cot(alpha)=frac1mp an(alpha) an(eta) an(alpha)pm an(eta)$
$sin(alpha + eta + gamma) = sin alphacdotcos etacdotcos gamma + cos alphacdotsin etacdotcos gamma + cos alphacdotcos etacdotsin gamma - sin alphacdotsin etacdotsin gamma$
$cos(alpha + eta + gamma) = cos alphacdotcos etacdotcos gamma - sin alphacdotsin etacdotcos gamma - sin alphacdotcos etacdotsin gamma $$- sin alphacdotcos eta cdotsin gamma - cos alpha cdot sin etacdot sin gamma$
$ an(alpha + eta + gamma) = frac an alpha + an eta + an gamma - an alphacdot an eta cdot an gamma1 - an alpha cdot an eta - an etacdot an gamma - an alphacdot an gamma$
Sum & Difference of Trigonometric Functions$ extrm sin alpha + extrm sin eta = 2 extrm sin fracalpha + eta2 extrm cos fracalpha - eta2$
$ extrm sin alpha - extrm sin eta = 2 extrm sin fracalpha - eta2 extrm cos fracalpha + eta2$
$ extrm cos alpha + extrm cos eta = 2 extrm cos fracalpha + eta2 extrm cos fracalpha - eta2$
$ extrm cos alpha - extrm cos eta = -2 extrm sin fracalpha + eta2 extrm sin fracalpha - eta2$
$ an alpha + an eta = fracsin(alpha+eta)cos alpha cdotcos eta$
$ an alpha - an eta = fracsin(alpha-eta)cos alphacdotcos eta$
$cot alpha + cot eta = fracsin(alpha+eta)sin alphacdotsin eta$
$cot alpha - cot eta = frac-sin(alpha-eta)sin alphacdotsin eta$
Multiplication of 2 Trigonometric Functions$ extrm sin alpha extrm sin eta = frac12 ( extrm cos (alpha - eta) - extrm cos (alpha + eta))$
$ extrm cos alpha extrm cos eta = frac12 ( extrm cos (alpha - eta) + extrm cos (alpha + eta))$
$ extrm sin alpha extrm cos eta = frac12 ( extrm sin (alpha + eta) + extrm sin (alpha - eta))$
$ an alpha cdot an eta = frac an alpha+ an etacot alpha+cot eta=-frac an alpha- an etacot alpha-cot eta$
$cot alpha cdot cot eta = fraccot alpha+cot eta an alpha+ an eta$
$ an alpha cdot cot eta = frac an alpha+cot etacot alpha+ an eta$
$sin alphasin etasin gamma = frac14ig(sin(alpha+eta-gamma)+sin(eta+gamma-alpha)+sin(gamma+alpha-eta)-sin(alpha+eta+gamma)ig)$
$cos alphacos etacos gamma = frac14ig(cos(alpha+eta-gamma)+cos(eta+gamma-alpha)+cos(gamma+alpha-eta)+cos(alpha+eta+gamma)ig)$
$sin alphasin etacos gamma = frac14ig(-cos(alpha+eta-gamma)+cos(eta+gamma-alpha)+cos(gamma+alpha-eta)-cos(alpha+eta+gamma)ig)$
$sin alphacos etacos gamma = frac14ig(sin(alpha+eta-gamma)-sin(eta+gamma-alpha)+sin(gamma+alpha-eta)+sin(alpha+eta+gamma)ig)$
Tangent half-angle substitution$sin alpha = frac2 anfracalpha21+ an^2fracalpha2$
$cos alpha = frac1- an^2fracalpha21+ an^2fracalpha2$
$ an alpha = frac2 anfracalpha21- an^2fracalpha2$
$cot alpha = frac1- an^2fracalpha22 anfracalpha2$
Other Trigonometric Formulas$1pmsin alpha=2sin^2ig(fracpi4pm fracalpha2ig)=2cos^2ig(fracpi4mp fracalpha2ig)$