Những hằng đẳng thức xứng đáng nhớ chắc không còn xa lạ gì với các bạn . Từ bây giờ Kiến đã nói kỹ hơn về 7 hằng đẳng thức quan trọng đặc biệt : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhị lập phương và sau cuối là hiệu nhì lập phương. Các bạn cùng xem thêm nhé.

Bạn đang xem: Đẳng thức là gì lớp 7

A. 7 hằng đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta tất cả x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu hai bình phương

Với A, B là các biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập phương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta gồm : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. Y2- y3

= ( x - y )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Chú ý: Ta quy ước A2- AB + B2là bình phương thiếu của hiệu A - B.

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng nhì lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu nhì lập phương

Với A, B là các biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chú ý: Ta quy ước A2+ AB + B2là bình phương thiếu hụt của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta tất cả : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. Bài tập trường đoản cú luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

Khi đó ta có ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

Xem thêm: Trồng Rau Muống Bị Vàng Lá Trở Nên Xanh Um, Tươi Tốt Tại Nhà Vô Cùng Đơn Giản

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

Khi đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy lưu giữ nó nhé

*

Những hằng đẳng thức đáng nhớ bên trên rất đặc biệt quan trọng tủ kiến thức của chúng ta . Nuốm nên các bạn hãy phân tích và ghi lưu giữ nó nhé. Hồ hết đẳng thức đó giúp bọn họ xử lý các bài toán dễ dàng và nặng nề một phương pháp dễ dàng, chúng ta nên làm đi làm lại để bản thân rất có thể vận dụng tốt hơn. Chúc các bạn thành công và cần cù trên con đường học tập. Hẹn chúng ta ở những bài bác tiếp theo